亚洲va中文字幕无码毛片,久久久久久亚洲精品无码,久久久久久九九99精品,国产成人免费ā片在线观看,国产精品国产三级国产av剧情,国产精品久久久久aaaa,人妻久久久一区二区三区,久久精品国产精品亚洲艾草网,久久精品国产一区二区三区不卡,亚洲av毛片一区二区三区

<samp id="gccwo"></samp>
  • <ul id="gccwo"></ul>
  • 技術(shù)文章

    Technical articles

    當(dāng)前位置:首頁技術(shù)文章等離子體處理對(duì) 硅表面氧空位缺陷工程

    等離子體處理對(duì) 硅表面氧空位缺陷工程

    更新時(shí)間:2020-12-02點(diǎn)擊次數(shù):2629

    Electronic Supplementary Information For

    Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma

    treatment for enhancing VOCs sensing performances

    Bin Tong, a b Gang Meng, * a c Zanhong Deng, a c Mati Horprathum, d Annop

    Klamchuen e and Xiaodong Fang * a c

    aAnhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine

    Mechanics, Chinese Academy of Sciences, Hefei, 230031, China

    bUniversity of Science and Technology of China, Hefei 230026, China

    cKey Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei

    230031, China

    d Opto-Electrochemical Sensing Research Team, National Electronic and Computer Technology Center,

    PathumThani 12120, Thailand

    eNational Nanotechnology Center, National Science and Technology Development Agency, Pathum

    Thani 12120, Thailand

     

    Experimental Section

    1.1 Synthesis of CuAlO2 particles

    First of all, 0.04 mol Cu(CH3COO)2·H2O (Alfa Aesar, 99.9%) was dissolved in 160 mL absolute alcohol with

    vigorous stirring, and then 16 mL HNO3 (Sinopharm Chemical Reagent, 99.7%), 0.2 mol C6H8O7·H2O

    (Sinopharm Chemical Reagent, 99.8%) and 0.04 mol Al[OCH(CH3)CH2CH3]3 (Alfa Aesar, 97%) were added into

    the above solution in sequence. After stirring for 6 hours, 16 mL HNO3 was added to the solution drop by drop to

    obtain a well-mixed precursor solution. The precursor solution was dried at 100 °C overnight. In order to remove

    the organics, the condensed solution was heated to 300 °C for 6 hours. After that, the dried powders were milled

    for 24 h using a planetary ball miller and then annealed at 1100 °C for 10 h under air atmosphere. Subsequently,

    the powders were reground and heated to 950 °C under flowing N2 atmosphere for 6 hours to form delafossite

    CuAlO2 particles. To ensure the pure phase of delafossite CuAlO2, trace (excess) CuxO was washed with 1 M

    diluted hydrochloric acid, 11 deionized water and absolute alcohol in sequence several times, and the final products

    were dried in an oven at 80 °C for 24 h.

    1.2 Fabrication of CuAlO2 sensors

    The CuAlO2 slurry was prepared by dispersing the powders in appropriate isopropyl alcohol. CuAlO2 sensors

    were prepared by brushing the above paste onto a thin alumina substrate with micro-interdigital Pt electrodes.

    CuAlO2 films on slide glass substrates were fabricated simultaneously for characterization. After naturally drying,

    the CuAlO2 sensors and films were heated at 350 °C under flowing air atmosphere for 3 hours. Afterwards, the

    samples were treated by Ar&H2 plasma in KT-S2DQX (150 W, 13.56 MHz, (鄭州科探儀器設(shè)備有限公司)) plasma etching system

    at 10 sccm 4% H2 in Ar and the pressure of ~ 99.8 Pa for 30 min, 60 min and 90 min, herein are referred to as

    pristine, PT-30, PT-60 and PT-90.

    1.3 Characterization and gas sensing test

    CuAlO2 samples were characterized by X-ray diffraction (XRD, Rigaku Smartlab), scanning electron

    microscope (SEM, VEGA3 TESCAN), field emission high resolution transmission electron microscope

    (HRTEM, Talos F200X), X-ray photoelectron spectroscopy (XPS, Thermo Scientific Esca Lab 250Xi

    spectrometer ), photoluminescence (PL, JY Fluorolog-3-Tou) and Electron spin resonance (ESR, JEOL, JES

    FA200 ESR spectrometer ). Mott-Schottky measurements were carried out on an electrochemical work-station

    (Zahner Company, Germany) in 1M NaOH solution (pH=12.5) with frequency of 5000 Hz. Platinum sheet,

    Ag/AgCl electrode and pristine/ PT-30 CuAlO2 samples were used as counter electrode, reference electrode and

    work electrode, respectively. Gas sensing tests were examined in SD101 (Hua Chuang Rui Ke Technology Co.,

    Ltd.) sensing system. The response was defined as ΔR/Ra, ΔR = Rg Ra, where Ra and Rg are sensor resistance in

     

    flowing drying air and synthetic VOCs, respectively. During gas sensing test, the total flow rate of the dry air and

    VOCs gas were adjusted to be 1000 sccm by mass flow controllers (MFCs).

     

    Fig. S1. Cross-sectional SEM image of typical CuAlO2 sensors. The inset shows a low-magnification image.

    The sensing layer is comprised of loosely packed CuAlO2 particles, with a thickness of ~ 15 μm

     

     

    Fig. S2. XRD patterns of pristine and Ar&H2 plasma treated CuAlO2 sensors. Ar&H2 plasma treatment didn’t

    cause any detectable impurity phase. All the samples show a 3R (dominent) and 2H mixed CuAlO2 phase.

     

    Fig. S3. SEM images of pristine (a) and Ar&H2 plasma treated PT-30 (b), PT-60 (c) and PT-90 (d) CuAlO2

    sensors. Except for 90 minitues treated sample (PT-90) with appearance of small nanodots, no obrvious change

    of surface morphology was obervered via Ar&H2 plasma treatment.

     中國科學(xué)技術(shù)大學(xué)   申請(qǐng)論文提名獎(jiǎng)CC - 2019 - SI - Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment

    感謝中科大的論文    沒有發(fā)完  之后我在慢慢更新吧

    久久天堂AV女色优精品| 给我免费播放片在线中国| 国产美女精品一区二区三区| 欧美老熟妇乱大交xxxxx| 色一情一乱一伦一视频免费看| 国产精品videossex久久发布| 亚洲欧美综合一区二区三区四区| 五月婷日韩中文字幕| 亚洲av无码一区二区三区四区| 免费国产一区二区三区| 丰满少妇作爱视频免费观看| 亚洲国产精品无码专区| 免费 成 人 黄 色 网站69| 被灌满精子的波多野结衣| 亚洲国产精品综合久久网络| 色综合久久无码五十路人妻| 国产激情久久久久影院老熟女免费| 亚洲AV日韩AV天堂影片精品一| caoporn免费视频国产| 欧美日韩一区二区成人午夜电影| 最新亚洲人成网站在线观看| 成a人片亚洲日本久久| 一本一道av无码中文字幕| 久久精品国产精品久久久| 中文字幕在线观看不卡视频| 男女作爱免费网站| 中文字幕在线免费视频| 久久 国产 尿 小便 嘘嘘| AV无码专区亚洲AVL在线观看| 狼友av永久网站免费观看| 亚洲v无码一区二区三区四区观看| AV无码动漫一区二区三区精品| 无码性午夜视频在线观看| 欧美xxxxx高潮喷水麻豆| 两腿间花蒂被吸得异常肿大| 亚洲阿v天堂一区二区三区| 91精品国产免费人成网站| 日韩免费无码一区二区视频| 中文无码乱人伦中文视频在线| 亚洲人成色777777在线观看| 亚洲中文无码av在线|